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1 Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia, 2 Russian Research Institute of Sport and Physical Education,

Moscow, Russia, 3 Institute for Frontier Areas of Psychology and Mental Health, Freiburg im Breisgau, Germany

Abstract

Background: The present study investigates neurobiological underpinnings of individual differences in time perception.

Methodology: Forty-four right-handed Russian Caucasian males (18–35 years old) participated in the experiment. The
polymorphism of the genes related to the activity of serotonin (5-HT) and dopamine (DA)-systems (such as 5-HTT, 5HT2a,
MAOA, DAT, DRD2, COMT) was determined upon the basis of DNA analysis according to a standard procedure. Time
perception in the supra-second range (mean duration 4.8 s) was studied, using the duration discrimination task and
parametric fitting of psychometric functions, resulting in individual determination of the point of subjective equality (PSE).
Assuming the ‘dual klepsydra model’ of internal duration representation, the PSE values were transformed into equivalent
values of the parameter k (kappa), which is a measure of the ‘loss rate’ of the duration representation. An association
between time representation parameters (PSE and k, respectively) and 5-HT-related genes was found, but not with DA-
related genes. Higher ‘loss rate’ (k) of the cumulative duration representation were found for the carriers of genotypes
characterized by higher 5-HT transmission, i.e., 1) lower 5-HT reuptake, known for the 5-HTTLPR SS polymorphism compared
with LL, 2) lower 5-HT degradation, described for the ‘low expression’ variant of MAOA VNTR gene compared with ‘high
expression’ variant, and 3) higher 5-HT2a receptor density, proposed for the TT polymorphism of 5-HT2a T102C gene
compared with CC.

Conclusion: Convergent findings of the present study and previous psychopharmacological studies suggest an action path
from 5-HT-activity-related genes, via activity of 5-HT in the brain, to time perception. An involvement of the DA-system in
the encoding of durations in the supra-second range is questioned.
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Introduction

The internal representation of time, or ‘time perception’, is

indispensable for orientation and purposeful action within one’s

physical and social environment. However, the physiological and

psychological determinants of time perception, together with their

underlying neural mechanisms, are still insufficiently understood.

Further, there is substantial evidence for inter-individual differ-

ences in time perception, based upon both everyday experience

and data from controlled experiments [1–3]. There is a large

amount of literature hypothesizing the rôle of different neural

transmission subsystems in time perception. Most reports connect

mechanisms of time perception with the dopamine (DA) system

[4–8]. However, there are also quite consistent findings that link

duration representation with the serotonin (5-HT) system [9–12].

Several factors influence dopamine (DA) and serotonin (5-HT)

transmission, particularly, the reuptake transporters, which

remove the transmitter substances from the synaptic cleft, the

number of receptors and their binding characteristics, as well as

agents that regulate the catabolism of monoamines. Contempo-

rary molecular genetic research has defined some genetic

polymorphism associated with these factors: 5-HT and DA

transport (5-HT-transporter-linked promoter region – 5HTTLPR

[13,14] and DAT VNTR [15]), receptor signaling (5-HT2a

T102C [16] and DRD2 TaqI A [17]), and catabolism (mono-

amine oxidase A (MAOA) VNTR [18] and catechol-O-methyl

transferase (COMT) V158M [19]).

The serotonin transporter protein 5-HTT is responsible for the

reuptake of serotonin (5-HT) from the synaptic cleft, and

determines the magnitude and duration of postsynaptic receptor-

mediated signaling. The polymorphism in the promoter region of

the 5-HTT gene has shown functional significance in coding high

(L-allele) and low (S-allele) transporter production [13–14]. The

variable number of tandem repeat (VNTR) polymorphism of the

MAOA gene present in 2, 3, 3.5, 4, or 5 copies [18]: variants with

3.5 or 4 copies of the repeat sequence are transcribed more

efficiently (‘high-expression variants’) than those with 3 or 5 copies

of the repeat (‘low-expression variants’). The MAOA gene

polymorphism is an X chromosome-linked polymorphism,

meaning that only one copy is present in males. In the T102C
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polymorphism of the 5HT2a receptor gene, the base in nucleotide

position 102 may be thymine (T) or cytosine (C), with three

possible genotypes TT, TC or CC [16]. It has been shown [20]

that the C allele has ca. 20% lower expression than the T allele.

Therefore, higher 5-HT transmission is related to the T allele of 5-

HT2a gene, the S allele of the 5-HTT gene and ‘low-expression

variants’ of the MAOA gene.

The VNTR polymorphism of human DAT gene yields several

alleles ranging from 3 to 11 repeats [15], alleles of 9 and 10 repeats

being the most common [21]. Most studies reported an association

of the 10-repeat allele with higher levels of expression of the gene

[22–25], although some studies have reported higher levels of

transcription associated with the 9-repeat allele [26] or no

association between the VNTR and DAT density [27]. COMT

degrades catecholamines such as dopamine. A polymorphism

located at codon 158 of the COMT gene may contain the amino

acids valine (val) or methionine (met). The val allele is 3 to 4 times as

active as the met allele [28]. The presence of one or two A1 alleles

in TaqI A polymorphism of the DRD2 gene was associated with

reduced D2 receptor binding in all areas of the striatum, reaching

statistical significance in the ventral caudate and putamen [17].

Therefore, higher DA transmission is related to A2 allele of DRD2

gene, 9 allele of DAT gene and met allele of COMT gene.

Contemporary methods of molecular genetics permit the

investigation of the genetic basis of inter-individual differences in

time perception by studying the association between gene

polymorphism and duration representation characteristics. The

aim of the reported study was to investigate the association of

polymorphism of genes related to the activity of 5-HT- and DA-

systems (such as 5-HTT, 5HT2a, MAOA, DAT, DRD2, COMT)

with individual differences in duration representation. Based upon

the review of literature, it is expected that both 5-HT and DA

related polymorphisms would exhibit measurable differences in a

time perception task. For that purpose we used a standard

psychophysical duration discrimination paradigm, combined with

data reduction and analysis relying upon the ‘dual klepsydra’

model (DKM) [29]. The DKM is based on a hypothesis of internal

time representation in ‘inflow/outflow’ systems as, for example,

externally driven and spontaneously de-exciting neural assemblies.

This model permits to quantify the ‘loss rate’ of those ‘neural

accumulators’ by a single parameter, k (kappa), which can be

estimated both from duration discrimination [30] and duration

reproduction data. The DKM parameter k was shown to vary

significantly with the phase of the circadian activation cycle [31];

to be sensitive to a neurochemical intervention affecting the 5-HT

system [11]; and to differ significantly between two ethnically

different populations, Swedish African compared to native

Swedish population (reanalysis of data from [2] in [31]). All these

findings indicate that k reflects state-dependent (externally induced

or internally driven) changes and/or constitutional differences in

time perception.

Materials and Methods

Volunteers
Forty-four right-handed Russian Caucasian males (mean age 22

years, SD +4 years) participated in the experiment, which

consisted of a battery of cognitive tasks that were presented whilst

EEG was recorded. The participants were selected from the

database of the Russian Research Institute of Sport and Physical

Education (Moscow), which contained subjects with DNA

samples. The choice was made so as to balance the frequency of

relatively rare genotypes with functionally different, but more

frequent genotypes, to allow for their later comparison. To exclude

possible effects of gender and handedness, only male, right-handed

subjects were eligible for participation. The subjects were

requested to have a good night sleep before the experiment. All

experiments were conducted at about mid-day.

Only behavioural data from a duration discrimination task

(described below, please see the Procedure section) are reported

here. Thirteen subjects from the sample participated in a

replication of the duration discrimination task, with the interval

between sessions ranging from 2 weeks to 9 months.

The study was approved by the Russian Research Institute of

Sport and Physical Education Ethical Committee. The aim and

nature of the experiment was explained to the participants and all

of them gave written informed consent before the experimental

session.

Genotyping
Genomic DNA was extracted from venous blood according to

standard procedures. The 5-HTTLPR, MAOA VNTR, T102C

5HT2a, Val158Met COMT, TaqIA DRD2, DAT VNTR

polymorphisms was evaluated as specified by previous published

experimental protocols (specifically Refs. [32–37]).

Procedure
A 2-alternative forced-choice duration discrimination task,

similar as used in [30], was employed as part of the test battery

in the experiment. The subjects had to compare two durations (t1

and t2), marked by the appearance of a visual stimulus on a

computer monitor, observed from a distance of about 100 cm.

The duration carrier stimulus was a gray asterisk

(RGB = 160,160,160) of 15 mm diameter, displayed on a black

background (Fig. 1). The inter-stimulus interval (ISI) was kept at a

constant 0.9 s throughout. The subjects had to indicate which of

the durations was shorter, choosing one of the displayed response

boxes with a pointing device; a neutral response (‘apparently

equal’) was not allowed. The interval from the end of the second

interval to the query was 1.0 s. There was no fixed inter-trial

interval; the subjects had to press a button on the response device

to proceed to the next trial. No feedback was provided to the

subjects during the session. Prior to the experiment, the subjects

Figure 1. Duration discrimination paradigm. (Adapted from [37].)
doi:10.1371/journal.pone.0012650.g001
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were verbally discouraged from sub-vocal mental counting or

similar time-keeping strategies, such as hand or foot tapping.

The difference between the two durations, t1{t2, was varied at

nine levels with a step of 0.4 sec, while the sum of the two

durations was kept constant, t1zt2 = 9.6 s. This design resulted in

nine combinations of durations (t1, t2), namely, (3.2, 6.4), (3.6,

6.0), (4.0, 5.6), (4.4, 5.2), (4.8, 4.8), (5.2, 4.4), (5.6, 4.0), (6.0, 3.6),

and (6.4, 3.2 s). These combinations covered symmetrically

duration ratios range from 1/2 to 2/1. For each of the nine

combinations (t1, t2) there were eight repetitions, presented in a

randomized order. The entire block, comprising 9|8 = 72 trials,

took about 15–20 minutes.

Analysis
In principle, the data analysis followed the same approach as

that in described in [30]. Relative frequencies of the response ‘1’

(indicating that the subject perceived the 1st interval as shorter),

were calculated separately for each subject and each of the

durations pairs (t1, t2). Gaussian psychometric functions were

fitted to the data:

P(t1 perceived shorter than t2Dx)~W c
x{h

v

� �
ð1Þ

where x is a relative difference of the two durations,

x~
t2{t1

t1zt2
ð2Þ

In eq. (1) W denotes the Gaussian cumulative distribution function,

h identifies the point of subjective equality (PSE), v is a measure of

discrimination uncertainty, and the constant c~W{1 3

4

� �
~

0:6745 (i.e., 75% quantil of the normal distribution) is introduced

merely for convenience, to have v scaled to ‘just noticeable

differences’ as units. As seen from eq. (1), the probability of the 1st

and of the 2nd interval being perceived shorter is equal for x~h:

then P~W(0)~
1

2
. For the PSEs (h values) given by a psycho-

metric function fit, pairs of subjectively indifferent durations t01, t02
were calculated:

t01~4:8(1{h), t02~4:8(1zh) ð3Þ

The case hv0 (observed in most subjects; see below, Results), i.e.,

t01wt02, indicates a ‘subjective shortening in memory’ [38] of

retained durations, a phenomenon which is naturally accounted

for by the dual klepsydra model (DKM) of internal representation

of temporal durations [30]. The corresponding value of the

parameter k can then be estimated from the subjectively

indifferent durations t01,t02 (details given in [30], p. 248). The case

hw0 cannot be represented by the DKM, since k cannot attain

negative values; for these cases we put, formally, k~0. For

descriptive purposes, the ratios of subjective equality (RSE)

t02
t01

~
1zh

1{h
ð4Þ

were also calculated.

The data were compared between the subjects with different

genotypes, using one-way ANOVA with subsequent post-hoc

Fisher’s Least Significant Difference (LSD) analysis, and t-test for

independent variables. For those 13 subjects who were available

for the replication experiment, Pearson correlations between the

measures obtained from the 1st and 2nd experiment were

calculated, to assess the test–retest stability for the PSEs and k’s.

Multiple regression analysis was done to examine the relationship

between each dependent variable (PSE, RSE, or k) and set of

independent variables, such as genotypes, related to 5-HT or DA

systems. For each polymorphism type, the coefficients, indicating

relative differences between genotypes, were assigned in accordance

with the precedent within the literature. The val allele of COMT

gene was claimed [28] to be 3 to 4 times as active as the met allele,

therefore the weights 1, 2, 3 were assigned to genotypes met/met, val/

met, val/val, respectively. Lesch [14] reported that S allele of 5HTT

gene is about 20 times less productive compared to L-allele,

therefore, 2, 3, 4 weights were assigned to SS, LS and LL genotypes,

respectively. Polesskaya and colleagues [20] showed that the C allele

of 5HT2a gene has 20% lower expression than the T allele,

therefore the ratio between T and CC variants is about 5/4.

According to [18, Fig. 2] the alleles with 4 copies of the repeat

sequence are transcribed about 3 to 5 times more efficiently than

with 3 copies, therefore, the weights 4 and 1 were assigned 4- and 3-

copies alleles, respectively. Based on the study of Thompson and

others [17] the approximate average ratio between density of DRD2

receptors for carriers of A1{ and A1+ variants of DRD2 gene was

3/2. According to study of Heinz and colleagues [23] individuals

with the 9-repeat/10-repeat genotype had a mean 22% reduction of

DAT protein availability in putamen compared with 10-repeat

homozygous individuals. This ratio was approximated to be 4/5.

Results

Molecular genetic analysis allowed to define the polymorphisms

of 5-HTT, COMT, 5HT2a, DAT genes for all 44 subjects, DRD2

gene polymorphisms for 43 subjects, MAOA gene polymorphisms

for 41 subjects. For reliable statistical comparison some rare

genotypes with similar functional activity were merged together:

TT and TC genotypes of 5HT2a were merged to T+, 10/9 and 9/

9 variants of DAT gene were merged to 9+, A1A1 and A1A2

variants of DRD2 gene to A1+. Post-hoc data inspection revealed

an atypical form of psychometric function in one subject, who

seemingly misunderstood the instruction; this subject was excluded

from further analysis. The numbers of subjects with particular

genotypes are presented in Tables 1 and 2.

Table 2 contains descriptive statistic values for duration

representation parameters (PSE, RSE and k) calculated for 5-

HTT, MAOA and 5-HT2a genotypes.

One-way ANOVA with LL, LS and SS variants of 5-HTT gene

as 3 levels of independent categorical factor 5-HTT revealed main

effect of these gene on PSEs (F (2, 40)~5:52, p~0:008), RSE

(F (2, 40)~5:03, p~0:01) and k (F (2, 40) = 6.67, p~0:003)

values. Post-hoc Fisher LSD tests revealed that PSE, k and RSE

values were significantly different between SS genotype and two

others (LL and LS). A t-test for independent variables revealed a

significant difference between the carriers of 3 and 4 variant of

MAOA gene: the carriers of ‘low-expression variants’ of MAOA

gene had smaller PSE (t(38)~2:61, p~0:01), RSE (t(38)~2:56,

p~0:01) and, accordingly, greater k (t(39)~2:62, p~0:01) values

than the carriers of ‘high-expression variants’. There were also

significant differences between homozygote variants of 5-HT2a

gene: T-carriers had more negative PSE (t(41)~2:00, p~0:05),

smaller RSE (t(41)~2:01, p~0:05), than CC-carriers.

Fig. 2 graphically presents the number of subjects of described

5-HT-related genotype (vertical boxes of different shadings) in

relation to the duration discrimination parameters, namely k, PSE

and RSE (lower horizontal line). The predominance of SS

Time Perception and Genotype
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genotype of 5-HTT gene, LA genotype of MAOA gene and TT

genotype of 5-HT2a gene is clearly seen for the subjects with more

negative PSE, and corresponding k and RSE values.

No significant differences between time representation param-

eters were observed for DA-related genes.

Multiple regression analysis revealed a significant relationship

between 5-HT-related genes and duration representation param-

eters (F (3, 39)~6:6, p~0:001 for PSE, F (3, 39)~6:2, p~0:002
for RSE, F (3, 39)~7:1, p~0:001 for k). The multiple regression

coefficients are significant for 5-HTT and MAOA (pv0:05) and

marginally significant for 5-HT2a (pv0:1). The multiple regres-

sion equations are

PSE~z0:34½5HTT�z0:31½MAOA�{0:25½5HT2a�

RSE~z0:33½5HTT�z0:30½MAOA�{0:25½5HT2a�

k~{0:39½5HTT�{0:30½MAOA�z0:21½5HT2a�

Multiple regression analysis did not reveal any significant

relationship between duration representation parameters and

genotypes related to dopaminergic system (pw0:5).

Significant correlations between the first and second session

(test–retest) were found: for PSE r~0:73, p~0:004, for kappa

r~0:70, p~0:04.

Discussion

The results of our study suggest that there is an association

between 5-HT-related genes and internal (neural) representation

of temporal durations, assessed by parameters derived from

psychometric functions, and their DKM-based equivalent (k).

Figure 2. Association of genotypes and time perception. The distribution of 5-HT-related genotype carriers (vertical boxes of different
shadings, number of subjects) in relation to the duration discrimination parameters, namely k, PSE and RSE (lower horizontal line) is shown. The
predominance of SS genotype of 5-HTT gene, LA genotype of MAOA gene and TT genotype of 5-HT2a gene, i.e., genotypes related to higher 5-HT
transmission, is clearly seen for the subjects with more negative PSE, and corresponding k and RSE values.
doi:10.1371/journal.pone.0012650.g002

Table 1. The distribution of carriers of different genotypes of
COMT, DAT and DRD2 genes in the sample.

COMT N DAT N DRD2 N

val/val 13 10/10 (9{) 22 A1A1 (A1+) 4

val/met 20 10/9 (9+) 21 A1A2 (A1+) 15

met/met 11 9/9 (9+) 1 A2A2 (A1{) 24

N = total number of subjects.
doi:10.1371/journal.pone.0012650.t001
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Precautions were taken against possible effects of confounding

variables. Only male participants were recruited for the study,

since previous studies demonstrated gender-related difference in

the 5-HT-system functioning in human and animals (cf. [39]). To

avoid possible effects of sleep deprivation [40], the subjects were

requested to have a good night sleep. The experiments were

conducted at the same time of day to eliminate or minimize a

possible influence of circadian phase [31]. Data reduction and

analysis relied upon a model that already has been successfully

used in other studies [11,30]. High test–retest correlations

obtained in our study confirmed that the time representation

parameters used for the given purpose, i.e., PSE and k, are stable

characteristics of the subjects, and therefore provide a reliable

basis for comparisons between carriers of different genotypes.

We found that genotypes that were characterised by a higher 5-

HT transmission demonstrated a higher ‘loss rate’ of internal

duration representation: 5-HTTLPR SS versus LL polymorphism,

‘low expression’ variant (3) versus ‘high expression’ variant (4) of

MAOA VNTR gene, and T versus CC polymorphism of 5-HT2a

T102C gene. In contrast, no association between time represen-

tation parameters and the dopamine (DA) related genes, such as

DAT VNTR, DRD2 Taq1, COMT Val158Met polymorphisms,

was observed in our study. It is known that MAOA also influences

DA degradation, but to a lesser degree than 5-HT. Considering

that no purely DA-related genes were shown to be associated with

duration representation parameters, our study suggests that the

duration representation in the supra-second domain may be not

related to the DA-activity.

It is generally agreed that time perception exhibits a multi-

regional structure, i.e. different mechanisms are responsible for

subjective duration encoding in different time ranges [29,41].

Most reports connect mechanisms of time perception with the

dopamine DA system [4–8,42]. Many pharmacological studies

showed that substances influencing DA activity (such as haloper-

idol, which is a blocker of the DRD2 receptors) impair the

processing of short durations (v500 ms) [5–7,43,44], whereas the

representation of longer durations is more dependent upon other

cognitive processes, such as attention and memory, and therefore

influenced by many other substances. There are also quite

consistent findings that the representation of intervals w1 s is

associated with serotonergic (5-HT) activity [9–12]. For example,

Mitrani et al. [10] showed that LSD25 and mescaline specifically

destroyed the time orientation, keeping the short duration (300–

1000 ms) perception intact. These substances mostly activate the

5-HT system [45]. Other studies [11,12] found an effect of

psilocybin, a 5-HT receptor agonist, on time representation. In

sum, pharmacological data indicate the relation of time represen-

tation and subjective time experience to DA- and 5-HT-related

systems, the latter being mostly associated with representation of

supra-second intervals.

A recent study [46], carried out on a selected population of

women (synchronous swimmers), also revealed associations between

genetic polymorphisms and individual differences in subjective time

perception, suggesting that short duration perception (v2 seconds)

is related to the dopaminergic system, whereas the perception of

longer durations is related to the serotonergic system. The study

showed that genes related to the activity of the DA-system (COMT

gene) was associated with the reproduction of 1–2 seconds intervals,

whereas genes related to the activity of 5-HT system were associated

with results in a time production task (1 minute interval), a

subjective time flow questionnaire, and a current time orientation

test. It is noteworthy that the association of the 5-HT-related genes

with duration representation in the several seconds range was

observed both for women [46] and for men (the present study).

Therefore, we suggest that the pattern of results reported here—i.e.,

higher ‘loss rate’ of duration accumulation for carriers of genetic

variants with higher 5-HT activity—also holds for women

population. However, more studies are needed to investigate this

issue further, keeping in mind that gender effects on time perception

have been reported [47].

The major result of our study is the association of 5-HT related

genes with time perception parameters, such as PSE, RSE, k. What

does it mean in terms of neurobiology? As argued in [48], excitable

cell ensembles can serve as putative integrators in the DKM scheme.

We may hypothesise that ad hoc allocated local neuronal assemblies

play the rôle of the ‘accumulators’, whereas the equilibrium state

maintained by intra-assembly self-excitation corresponds to the

‘empty’ accumulator, and a temporary input from an extraneous

source corresponds to the ‘inflow’ increasing the overall excitatory

state of the assembly. The balance between self-excitation and de-

Table 2. 5-HTT, MAOA and 5-HT2a genotypes and duration representation parameters: PSE, RSE and k.

N PSE RSE k==10{{2 s{{1

mean+SE min max mean++SE min max median min max

5-HTT genotypes

LL 11 {0.037+0.020 {0.143 0.066 0.94+0.04 0.75 1.14 1.6 0.0 5.1

LS 20 {0.054+0.014 {0.129 0.107 0.90+0.03 0.77 1.24 2.4 0.0 4.6

SS 12 {0.112+0.012 {0.171 {0.042 0.80+0.02 0.71 0.92 4.3 1.5 6.1

MAOA genotypes

4-HA 27 {0.047+0.013 {0.159 0.107 0.92+0.02 0.73 1.24 1.4 0.0 5.7

3-LA 13 {0.101+0.013 {0.171 0.000 0.82+0.02 0.71 1.00 4.0 0.0 6.1

5-HT2a genotypes

CC 20 {0.046+0.015 {0.139 0.107 0.92+0.03 0.75 1.24 2.0 0.0 4.9

TC(T+) 7 {0.080+0.022 {0.143 0.032 0.86+0.04 0.75 1.07 3.5 0.0 5.1

TT(T+) 16 {0.085+0.014 {0.171 0.000 0.85+0.02 0.71 1.00 2.9 0.0 6.1

T+ 23 {0.084+0.012 {0.171 0.032 0.85+0.02 0.71 1.07 3.5 0.0 6.1

N = total number of subjects.
doi:10.1371/journal.pone.0012650.t002
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excitation within the assembly ascertains its stability and determines

its reactivity to the extraneous input. Specifically, the de-excitation

rate, acting towards the functional equilibrium of the assembly,

corresponds to the ‘loss rate’ in the DKM, represented by the

parameter k. Our current study connects the parameter k with the

5-HT transmission: the more 5-HT available for receptor activation

(here 5-HT2a), the higher is k. Therefore, the serotonergic system,

known for its modulation effects on neuronal processes, can be

proposed as important modulator of the de-excitation rate of the

hypothetical ‘accumulators’. In contrast to passive physical models

of ‘lossy integration’ (e.g. a charged capacitor–resistor circuit [29]),

in a realistic neural implementation the ‘loss’ is an active process,

acting as a clearance of previously allocated neural assemblies for re-

use in newly arising time representation requests. The necessity of a

clearance process follows naturally from the fact of limited resources

of the central nervous system.

Our study may provide a new view on the psychobiological

background of some individual differences. Many studies have

reported an association between duration representation param-

eters and personality [49–51], specifically impulsivity [49,52] and

psychoticism [50]. Time perception was found to be altered in

depressive states [53–56]: specifically, Gil and colleagues [56]

reported more negative PSEs in a temporal bisection task for

depressive patients, compared to healthy controls. Association of

5-HTT gene with neuroticism (negative emotionality), anxiety,

hostility and depression was also shown [14,39,57,58]: SS-carriers

are more prone to negative emotions, depression and suicidality

compared, to LL carriers. Therefore, it might be hypothesized that

carriers of the low active genotype (SS) of 5-HTT gene have more

negative PSE: this is exactly what is shown in our study. In our

view, duration representation characteristics may thus provide the

possible intermediate step between genetic variations and

depression; this suggested link has to be substantiated by further

research.

Our study might contribute to the understanding the brain

systems involved in duration representation. A Positron Emission

Tomography study revealed that 5-HTT availability was signif-

icantly reduced in the anterior cingulate cortex of individuals with

impulsive aggression, compared to healthy subjects [59]. A recent

study [60] reported that S-allele carriers had reduced grey matter

volume in perigenual cingulate and amygdala. The involvement of

cingulate cortex in duration representation is also discussed in the

literature [61–64]. Therefore, this region may be part of the brain

system through which the genetic base-to-duration representation

association is realized.

In summary, we report the association between 5-HT-related

genes and duration representation: carriers of genotypes related to

the increased level of 5-HT transmission are characterized by

higher loss rate (k) of internal duration representation, resulting in

more pronounced ‘subjective shortening’ of elapsed time intervals.

This result is in line with a recent finding [11] that psilocybin, an

agonist of 5-HT receptors (therefore enhancing the 5-HT

transmission), also temporarily increases k values. These conver-

gent findings allow to suggest an action path from 5-HT-activity-

related genes, via activity of 5-HT in the brain, to time perception.

On the other hand, the absence of an association between DA-

related genes and duration representation parameters questions

the rôle of dopaminergic system in time perception in the supra-

second range.
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41. Pöppel E (1997) A hierarchical model of temporal perception. Trends Cogn Sci

1: 56–61.
42. Wittmann M, Leland DS, Churan J, Paulus MP (2007) Impaired time

perception and motor timing in stimulant-dependent subjects. Drug Alcohol
Depend 90: 183–192.

43. Rammsayer TH (1997) Are there dissociable roles of the mesostriatal and

mesolimbocortical dopamine systems on temporal information processing in
humans? Neuropsychobiology 35: 36–45.

44. Rammsayer TH (1994) A cognitive-neuroscience approach for elucidation of
mechanisms underlying temporal information processing. Int J Neurosci 77:

61–76.

45. Nichols DE (2004) Hallucinogens. Pharmacology & Therapeutics 101: 131–181.

46. Portnova GV, Sysoeva OV, Maliuchenko NV, Timofeeva MA, Kulikova MA,
et al. (2007) [Genetic basis of time perception in athletes]. Zh Vyssh Nerv Deiat

Im I P Pavlova 57: 450–460.

47. Block RA, Hancock PA, Zakay D (2000) Sex differences in duration judgments:

a meta-analytic review. Mem Cognit 28: 1333–1346.

48. Wackermann J (2005) Experience of time passage: phenomenology, psycho-

physics, and biophysical modelling. In Buccheri R, ed. Endophysics, time,

quantum and the subjective, Singapore: World Scientific. pp 189–208.

49. Wittmann M, Paulus MP (2008) Decision making, impulsivity and time

perception. Trends Cogn Sci 12: 7–12.

50. Rammsayer TH (2002) Temporal information processing and basic dimensions

of personality: differential effects of psychoticism. Pers Ind Differ 32: 827–838.

51. Buchwald C, Blatt SJ (1974) Personality and the experience of time. J Consult

Clin Psych 42: 639–644.

52. Barratt ES (1983) The biological basis of impulsiveness: the significance of timing

and rhythm disorders. Pers Ind Differ 4: 387–391.

53. Wittmann M, Vollmer T, Schweiger C, Hiddemann W (2006) The relation

between the experience of time and psychological distress in patients with
hematological malignancies. Palliat Support Care 4: 357–363.
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64. Jech R, Dušek P, Wackermann J, Vymazal J (2005) Cumulative blood

oxygenation-level-dependent signal changes support the ‘time accumulator’
hypothesis. Neuroreport 16: 1467–1471.

Time Perception and Genotype

PLoS ONE | www.plosone.org 7 September 2010 | Volume 5 | Issue 9 | e12650


