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Jiřı́ Wackermann and Werner Ehm
Institute for Frontier Areas of Psychology and Mental Health

D-79098 Freiburg i. Br., Germany
<jw@igpp.de> <ehm@igpp.de>

Abstract

In the present paper the dual klepsydra model is applied to discrimination of temporal durations,
assessed by the method of pairwise comparison. Equivalence of the duration comparison and re-
production paradigms is demonstrated; expressions for the theoretical psychometric function in
terms of model parameters are given; and an approximative method to estimate the model param-
eters from an empirical psychometric function is presented. Estimates based on data from two
studies on duration discrimination are in good agreement with earlier estimates of relaxation times
derived from duration reproduction data. Various aspects of the model (presentation order error,
estimates of internal states, cognition of temporal order) are briefly discussed.

Dual klepsydra model of internal time representation [1, 2] was originally designed for the duration
reproduction paradigm. The model accounts naturally for qualitative features of data not addressed
by other models, and matches experimental data with good accuracy. Here we apply the stochas-
tic version of the model (SDKM) [3, 4] to another experimental paradigm for studies of duration
discrimination, namely, to pairwise comparison of temporal intervals.

Duration discrimination in the SDKM

Description of the model

The model consists of two inflow–outflow units (IOU) or, metaphorically, “leaky klepsydræ.” Two
IOUs are allocated for internal representation of two time intervals, s1 and s2, which are presented
sequentially to the subject and separated by an inter-stimulus interval w (Fig. 1a). Klepsydra 1 is
filled at inflow rate i1 during the first interval (0 ≤ t ≤ s1), and “leaks” thereafter; klepsydra 2 is
filled at inflow rate i2 during the second interval (s1 +w ≤ t ≤ s1 +w+s2) (Fig. 1b). Afterward, at
time t > s1 +w + s2, the subject has to indicate which of the two intervals was perceived as longer.
In terms of the SDKM, the states of both klepsydræ are compared, and the higher one determines the
subject’s judgment, J ∈ {1, 2}. Occasionally we write ‘s1 >s s2’ or ‘s1 <s s2’ for J = 1 or J = 2,
respectively, and read “subjectively longer” or “subjectively shorter.”

The dynamics of an IOU is described by a stochastic linear differential equation

dYt = (i − κYt) dt + σ dWt , (1)

with constant inflow rate i, “leakage coefficient” κ, and a noise term σ dWt, where Wt is the stan-
dard Wiener process. We will assume that inflow rates i1, i2 and dispersions σ1, σ2 are identical for
both klepsydræ. The model thus has three parameters, κ, i and σ. Klepsydræ states are unobserv-
able, and thus arbitrarily scalable; therefore, only the ratio γ ≡ i/σ can be determined uniquely,
and the model is fully specified by two parameters, κ and γ. The related quantities κ−1 and γ−2 are
referred to as relaxation time and diffusion time, respectively, of the system.

Solution to eq. (1) under the initial condition Y0 = 0 is

Yt =
i

κ

(
1 − e−κt

)
+ σ Ut ,
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Figure 1. (a) Time chart of an experimental trial. (b) Sample trajectories of states accumulated
at klepsydræ 1, 2. (c) Contour plot of a PMF with parameters γ = 3.162 s −1/2, κ = 0.02 s−1, w
= 1 s; dotted line: physical equality I ≡ {s1 = s2}; thick curve: subjective equality E1/2.

where Ut ≡
∫ t

0
e−κ(t−τ) dWτ is the standard Uhlenbeck–Ornstein process. Therefore, terminal

states of klepsydrae 1 and 2 at time t = s1 + w + s2 are independent, normally distributed random
variables, Kk ∼ N (µk, ν

2
k) (k = 1, 2), with

µ1 = i
κ

(1 − e−κs1) e−κ(w+s2) , ν2
1 = σ2

2κ
(1 − e−2κs1) e−2κ(w+s2) ,

µ2 = i
κ

(1 − e−κs2) , ν2
2 = σ2

2κ
(1 − e−2κs2) .

}
(2)

Psychometric function

Of interest is probability of a certain response, e. g., J = 1, as a function of durations s1 and s2,
that is, the “psychometric function” (PMF),

Ψ(s1, s2) ≡ P{J = 1 | s1, s2} ≡ P{s1 >s s2} .

Since K1 and K2 are independent, their difference K1 − K2 ∼ N (µ1 − µ2, ν
2
1 + ν2

2), and thus

Ψ(s1, s2) = P{K1 − K2 > 0} = Φ(ζ) ,

where Φ(·) is the Gaussian c. d. f., and its argument1

ζ =
µ1 − µ2√
ν2

1 + ν2
2

(3)

is a function of durations s1, s2, depending on parameters κ, i, σ, and the inter-stimulus interval w.
Inserting expressions for µ1, µ2, ν1, ν2 from (2) into (3) and writing, for brevity,2

C ≡ γ

√
2

κ
, (4)

gives

ζ = C
(1 − e−κs1) e−κw − (eκs2 − 1)√
(1 − e−2κs1) e−2κw + (e−2κs2 − 1)

.

In the limiting case κ → 0, eq. (3) attains the form

ζ = γ
s1 − s2√
s1 + s2

,

in which case the PMF is exactly antisymmetric, i. e., Ψ(s1, s2) + Ψ(s2, s1) = 1.
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Relation to duration reproduction

The psychometric function can be visualised as a bunch of curves Ep ≡ {(s1, s2) |Ψ(s1, s2) = p}
with p ∈ (0, 1) (Fig. 1c). Of special importance is the ‘manifold of subjective equality’ E1/2, where
P{s1 >s s2} = P{s1 <s s2}, therefore ζ = 0, and thus

(1 − e−κs1) e−κw = eκs2 − 1 .

This is equivalent to s2 = krf(s1, w), where krf(·, ·) is the ‘klepsydraic reproduction function,’
predicting mean response times in the model of duration reproduction [2].3 While in our previous
work [5] the equivalence of reproduction and pairwise comparison was asserted on merely intuitive
grounds, here the equivalence of the two experimental paradigms is rigorously proven.

Estimation of model parameters

Suppose we are given data from a duration discrimination experiment with duration pairs (s1, s2)
drawn from a one-dimensional stimulus manifold S. Estimates of parameters κ, γ can be obtained
via the maximum-likelihood method with the exact PMF Ψ(s1, s2) = Φ(ζ(s1, s2)) of the SDKM,
using a special iterative fitting procedure. This, however, can be avoided by a simple linearisation
strategy sketched in the following.

For definiteness, suppose that S is given by a smooth, parametrised curve x 7→ s(x) =
(s1(x), s2(x)). Close to any x = ξ, the function x 7→ ζ(s(x)) is well approximated by its tangent
x 7→ ζ(s(ξ)) + β (x − ξ), where the slope β is given by the inner product of the gradient of ζ and
the derivative of s at s(ξ) and ξ, respectively, β = ∇ζ(s(ξ)) · s

′(ξ).
Substantial simplification occurs at the intersection of S and E1/2, i. e., at the PSE s

◦ ≡
(s◦1, s

◦

2) = (s1(x
◦), s2(x

◦)). To see this, let us write ζ = γ u/
√

v, where for fixed κ and w,

u(s1, s2) = (1 − e−κs1) e−κw − (eκs2 − 1),

v(s1, s2) =
κ

2

(
(1 − e−2κs1) e−2κw + e2κs2 − 1

)
.

At the PSE we have ζ(s◦1, s
◦

2) = 0, hence u(s◦1, s
◦

2) = 0, and thus

∇ζ(s◦) = γ
∇u√

v
(s◦) − γ

2

u∇v

v3/2
(s◦) = γ

∇u√
v
(s◦),

so that at least near the PSE the following linearisation applies,

ζ(s(x)) ≈ γ ρ◦ (x − x◦), where ρ◦ ≡ 1√
v(s◦)

∇u(s◦) · s
′(x◦) .

Thus, if instead of the exact PMF we fit a standard PMF of the form Φ
(

x−θ
ω

)
to the data, then

parameters θ (PSE) and ω−1 (discrimination acuity) correspond to x◦ and β◦ = γ ρ◦, respectively,
and the fitted values θ̂, ω̂ yield estimates κ̂, γ̂ of the SDKM parameters, as follows. — First, θ̂
determines our estimate of the PSE, ŝ ≡ (s1(θ̂), s2(θ̂)), on the stimulus curve S. Then κ̂ is obtained
as the solution of the equation u(ŝ1, ŝ2) = 0 for the single quantity that was not yet fixed, that is κ.4

Second, on substituting the arguments of ρ◦ by their respective estimates ŝ1, ŝ2, κ̂, one gets a value
ρ̂ free of unknowns,5 and we set γ̂ = (ω̂ ρ̂)−1.

Let us summarise some noteworthy features of our estimates. First, the estimate of the
relaxation time, κ̂−1, depends on the point where S and E1/2 intersect (PSE), but not otherwise on
the stimulus manifold. On the contrary, the estimated signal-to-noise ratio (or subject’s discrimi-
nation acuity) γ̂ does depend on the choice of S, via the inner product appearing in the numerator
of ρ◦ (ρ̂) which involves the derivative of the stimulus curve. Actually, the dependence is purely
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Figure 2. Experimental data on duration discrimination. (a) Stimuli employed in the two re-
ported studies. (b) PMFs form the first study; thin curve, ¦: short durations (S3), thick curve,
◦: long durations (S6); each data point based on 72 trials (9 subjects × 8 repetitions). (c) PMF

from the follow-up study; each data point based on 100 trials (10 subjects × 10 repetitions).

geometrical, involving only the angle at which the two manifolds intersect; this follows from the
invariance of γ̂ under reparametrisations of the stimulus curve. The cosine of this angle, and hence,
for any fixed γ, the discrimination acuity ω−1 is maximised if S is orthogonal to E1/2 at the PSE.
We observe, in passing, that this confirms the golden rule of psychophysical experimentation: the
experimental design should be derived from a model of the phenomenon under consideration. If
this rule is not always followed in experimental studies, it is mostly due to the lack of a theoretical
model.

In standard designs of sensory discrimination experiments, one of the paired stimuli is
usually held constant (‘standard’) while the other stimulus is varied. Thus there are two experimen-
tal designs in which either (I) the variable x ≡ s1 precedes the standard s2 = s = const, or (II) the
standard s1 = s = const precedes the variable x ≡ s2. Accordingly, we obtain two partial PMFs,

Ψ̇I(x) = Ψ(x, s), Ψ̇II(x) = Ψ(s, x). (5)

In these two cases, S is a straight segment parallel to one of the two axes in the plane of duration
pairs (s1, s2). There is, however, no particular reason for these special experimental designs except
for tradition and ease of technical realisation.

Two data-based examples

The procedures described above are illustrated by results of two experimental studies. In the first
study [5], pairs of stimulus durations were chosen from two manifolds S c ≡ {(s1, s2) | s1 s2 = c2},
with c = 3 and 6 s, resp., parametrised by logarithmic ratio x = log2(s1/s2). In a follow-up study,
stimuli were taken from a manifold Lc ≡ {(s1, s2) | s1 + s2 = 2 c }, with c = 3 s, parametrised
by difference x = (s1 − s2)/2 (Fig. 2a). In both studies, the stimulus parameter x was varied at
nine levels, displaced symmetrically w. r. t. 0. Empirical PMFs fitted to group-averaged responses
are shown in Fig. 2b, c,6 and the respective estimates are summarised in Table 1 on the next page.

Except of the data subset S3 in the 1st study, where the PSE is almost exactly located at I ,
we see a pronounced asymmetry of the PMF in two of the three data sets. In these two cases, the
estimates κ̂ are in the same order of magnitude as those based on duration reproduction data [2];
accordingly, the relaxation times range from ∼30 to 45 s. In addition, estimates of the signal-to-
noise ratio γ̂ are in good agreement within the three data sets, with the respective diffusion times
being in the range ∼140 to 320 ms.
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Table 1.
Study no. Subjective equality SDKM parameters Char. times Ratio
(stimulus) ŝ1 [s] ŝ2 [s] ŝ1/ŝ2 κ̂ [s−1] γ̂ [s−1/2] κ̂−1 [s] γ̂−2 [s] C

1 (S3) 2.9831 3.0170 0.9888 0 2.4056 ∞ 0.1728 n. a.
1 (S6) 6.8629 5.2456 1.3083 0.0335 1.7647 29.87 0.3211 40.54
2 (L3) 3.1497 2.8503 1.1050 0.0222 2.6800 45.03 0.1392 27.14

Miscellaneous aspects

Presentation order error

As seen above, the PMF predicted by the SDKM is exactly anti-symmetric only for κ = 0; other-
wise, the PMF is asymmetric and the manifold of subjective equality, E1/2, deviates from physical
equality, I (Fig. 1c). Therefore, the partial PMFs Ψ̇I and Ψ̇II [see eq. (5)] are generally not identical;
in particular, the PSEs for the partial PMFs are different, θI > s > θII, where s is the ‘standard’ du-
ration. The model thus predicts a presentation order effect (POE) (also called ‘time order error’ or
Zeitfehler [6]), a well-known phenomenon in time perception as well as in other sensory modalities
[7, 8]. Importantly, the POE arises as a natural feature of the model, all other things being constant:
there is no need for auxiliary assumptions such as response bias, unequal attention allocation, or
unequal weighting of the 1st and 2nd stimulus [9].7

While the notion of the POE refers to the difference between two special partial PMFs, a
more natural measure of the discrimination asymmetry is given by the deviation of the PSE from
physical equality (expressed e. g. by the ratio ŝ1/ŝ2), or, in our model, by the value κ̂.

Estimates of terminal states

Terminal states accumulated at klepsydræ 1 and 2 may be of interest, especially in studies aiming
at neural mechanisms of internal duration representation. The klepsydræ per se are unobservable;
however, we can set, by convention, i ≡ 1, and calculate conditional means of the terminal states,
given the durations s1, s2, and the subject’s response J :8

〈K1〉J=j = µ1 − mj
ν2

1√
ν2

1 + ν2
2

, 〈K2〉J=j = µ2 + mj
ν2

2√
ν2

1 + ν2
2

, (6)

Here, µj , νj are specified by eq. (2), and the multipliers mj are defined as follows: m1(ζ) ≡
−Φ′(ζ)/Φ(ζ), m2(ζ) ≡ Φ′(ζ)/(1 − Φ(ζ)), where Φ(·) is the Gaussian c. d. f.

Quantities defined by eqs. (6) can be correlated, on a trial-by-trial basis, with neurophysi-
ological measurements as, for example, activation of brain areas assessed by fMRI (cf. ref. [10]). If
the external correlate is expected to reflect inflow intensities rather than accumulated states, it may
be reasonable to normalise 〈Kk〉j by the respective durations sk.

Retrospective judgment of temporal order

Consider a cognitive system for which the temporal order of events is indeterminate unless their
order of occurrence becomes biologically or psychologically significant, and only then is evaluated
on the basis of elapsed durations. Formally, for two events, E1 and E2, occurring at times t1 and t2,
and being recalled at time t0, t0 − t1 >s t0 − t2 ⇒ E1 ≺ E2. While in the model presented above
the internal representations of durations were accumulated sequentially, here the model is modified
to represent two parallel durations. In this latter case the PMF is always symmetrical, even for
κ > 0. Of interest is then discrimination acuity, i. e., the ability to distinguish the succession of
events occurred at times t1,2 = t̄ ± 1

2
4t. Analysis shows that, for κ = 0, discrimination acuity
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is monotonically increasing, proportionally to
√

t̄ ; whereas in the realistic case κ > 0, discrimi-
nation acuity reaches a maximum for some optimal ‘past depth’ and then decreases with t̄ → ∞.
Expectedly, the dimensionless ratio C defined by eq. (4) plays the rôle of a critical parameter.

This observation illustrates the interplay between the two characteristic time-scales (dif-
fusion vs. relaxation), and possibly opens a psychophysical perspective on the ‘inner and outer
horizons’ of subjective experience of time [11]. A detailed treatment of this topic is reserved for a
separate communication.

Notes

1 In signal detection theory usually represented by symbol d′ [7].
2 So that 1

2 C
2 is a ratio of the relaxation and diffusion times.

3 Strictly speaking, this is the ‘normal case’ of the krf , where parameter η ≡ i1/i2 = 1; but the equivalence
between reproduction and comparison demonstrably holds for η 6= 1 as well.
4 This equation always has the trivial solution κ = 0. Under the condition w ≤ ŝ2, which can be guaranteed
in advance, the equation has a positive solution if and only if ŝ1 > ŝ2. In that case the positive solution is
uniquely determined and taken as our estimate, κ̂. If there is no positive solution we set κ̂ = 0.
5 If κ̂ = 0, we set ρ̂ = (s′1(θ̂) − s′2(θ̂))/(s1(θ̂) + s2(θ̂))

1/2, as suggested by l’Hôpital’s rule.
6 In the original communication [5] the PMFs were defined as P{s1 <s s2}, and plotted against −x; as a
consequence, the curves shown there are inverted images of the curves in Fig. 2b.
7 Hellström in [9] argued that “comparison is not just subtraction.” In our model, the comparison is just a
subtraction [cf. the nominator in eq. (3)], but the operands are non-linear functions of physical durations.
8 We skip details of derivation of formulæ (6) because of space limitations.
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[8] Å. Hellström, ‘The time-order error and its relatives: Mirrors of cognitive processes in comparing,’
Psychological Bulletin 97, 35–61, 1985.
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