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INTRODUCTION 

There are two major strategies of quantitative 
analysis of multichannel EEG recordings. The first, 
time-oriented strategy attempts to characterize the 
bioelectric signals recorded at separate locations by 
traditional methods of analysis in time-domain. The 
alternative, space-oriented strategy aims at non-am- 
biguous description of entire potential field dis- 
tribution at a time, using interpolated potential maps 
and various space-domain descriptors (see Lehmann 
1987). 

The space-oriented approach is superior to the 
time-oriented one as it does not neglect correlations 
between recording locations (electrode sites). A 
series of maps is a direct and, in fact, the most "natu- 
ral" representation of the global spatio-temporal 
field dynamics. On the other hand, the space-do- 
main analysis still has to pose and solve many ques- 
tions; concepts of stationarity, segmentation, and 
adequate parametrization have to be rethought and 
eventually reformulated for global field distribu- 
tions. 

Space-oriented analysis can benefit from a well- 
-defined notion of state space. Basic concepts of this 
approach are briefly presented here; then it is shown 
how the state space representation yields a measure 
of complexity of map series. 

STATE-SPACE 
REPRESENTATION OF MAP 
SERIES 

Consider a multichannel EEG record based on 
simultaneous measurements at K electrode sites 
(K>l). A snapshot of brain's electric field at time t 
is represented by a K-dimensional vector u(t). An 
entire time epoch measured at a given sampling fre- 
quency is then represented by a sequence of N volt- 
agevectors { u ( ~ ~ ) ) ~ = I . . . N  . These data vectors - 
momentary electric states - can be interpreted ge- 
ometrically as points of an (abstract) K-dimensional 
linear vector space (see Naylor and Sell 197 1, for an 
introduction), a state space. The time evolution of 

the brain's electric states is then represented by a se- 
quence of points, a trajectory in the state space. 

The concepts of scalar product and norm of a 
vector, are defined generally for a K-dimensional 
space; this allow us to measure distances and angles 
in the state space. For instance, the measure of glo- 
bal field power of a map, used in the space-oriented 
analysis (Lehmann 1987), is obviously equivalent 
to the Euclidean norm of the corresponding data 
vector (up to a multiplicative constant). 

In the theory of vector spaces, the metric of the 
state space is generated by a function of two vector 
arguments, called scalar product u * v. Generally, 

T this product can be defined by u * v = u Gv, where 
G is an appropriate symmetrical matrix. Here we are 
dealing with the simplest case of a space with Eu- 
clidean metric only, so that the matrix G is the unit 
matrix. If, however, we took the assumption of con- 
tinuous field distribution into account, we would 
have to replace the unit matrix by a more general 
form,where the non-diagonal elements of matrix G 
corresponding to neighboring electrode locations 
are non-zero. In the following sections, we will in- 
tentionally disregard this correction for field con- 
tinuity. 

The semantics of the state space is thus quite 
straightforward; there are one-to-one correspond- 
ences between the traditional language of "brain 
mapping" and the state space representation. Table I 
summarizes these correspondences in a form of a 
"dictionary". 

TABLE I 

Correspondences between basic concepts of brain map- 
ping and state space representation 

Brain mapping State space 

field distribution (map) point 
zero field origin of coordinates (0) 
field landscape direction 
base map coordinate axis 
global field power distance from the origin 
map dissimilarity distance between points 
map correlation angle between directions 
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SPATIAL PCA 

An EEG trajectory in the state space makes up a 
"data cloud" of maps (data vectors) snapped at dis- 
crete time intervals. Now we want to find an ortho- 
normal system of base vectors so that any map (data 
vector) can be expressed as a linear combination of 
orthonormal base vectors: 

Solving this task, we find that the base vectors 
can be obtained as eigenvectors of the covariance 
matrix C. Assuming data being centred over time, 
the matrix C is defined by 

The expansion of the matrix C into its eigenvec- 
tors vl, ..., VK with eigenvalues hl, ..., h ~ ,  respective- 
ly, is as follows: 

Geometrically, the eigenvalues represent the pro- 
portions of variance along these new axes, so that 

K K 

z h i  = tr C = Zcii I total variance (1) 
i =  1 i =  1 

The solution is, in fact, equivalent to the proce- 
dure known as the Principal Component Analysis. 
Because here we are dealing with covariances be- 
tween spatially distributed measuring locations, the 
resulting eigenvectors can be interpreted again as 
spatial distributions - base maps. This is why we 
speak about Spatial Principal Component Analysis 
(S PC A). 

A well-known extremal condition holds for the 
principal components: if were order the eigenvalues 

in the descending order (hl 2 h2 2 ... 2 h ~ ) ,  then 
the first component (vl) exhausts maximum of the 
total variance, the second component (v2) exhausts 
maximum of the residual variance, etc. This 
property guarantees that any subspace spanned on 
M components (MeK) with highest h's represents 
maximum of the total variance of the data, and 
therefore provides an optimal projection of the orig- 
inal data cloud into a space of lower dimension (see 
Rao (1973, section 8g) for a more rigorous treatment). 

VISUALIZATION OF EEG 
TRAJECTORIES 

Although the geometrical interpretation of the 
state space is quite intuitive, it suffers by our lack 
of ability to visualize a space of more than three 
dimensions. We can use the results of SPCA to ob- 
tain a projection of the K-dimensional state space to 
a subspace of less dimensions (2-3), taking two or 
three principal components with highest eigen- 
values. Due to the extremal property of principal 
components stated above, it is ensured that this pro- 
jection represents maximum of variance. 

In this way we obtain the best possible projection 
of the trajectory into a 2- or 3-dimensional space. 
Only 2-dimensional projections are suitable for 
prints; 3-dimensional projections can be inspected 
by means of 3D data viewers; a lot of such software 
is available nowadays, e.g. Acrospin or Gnuplot. 

Figures 1A - E provide illustrative examples of 
state space trajectories reconstructed from EEG re- 
corded in different functional brain states. (Keep in 
mind that the figures display merely a projection to 
a 2-dimensional space of the two major principal 
components.). The variety of forms of those-trajec- 
tories entails a question of suitable characterization 
of their properties by few quantitative descriptors. 

INTRODUCING R-COMPLEXITY 

SPCA performed on a given data epoch yields a 
set of eigenvectors and their respective eigenvalues. 
The eigenvectors represent the topography of the 
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Fig. 1. Examples of 2-dimensional projections of state trajectories of 1 s of spontaneous EEG activity, constructed from 21 or 
19 channel recordings (system 10120). Length of axes proportional to G. Note that sampling frequencyfs differs between 
examples. A, relaxed waking state with dominant alpha rhythm; K=21,fs=1281s. B, relaxed waking state, flat fast activity; K=21, 
fs=128/s. C, sleep EEG, stage 4, with dominant slow waves; K=21,fs=102.4/~. D, sleep spindle in stage 2; K=21, fs=102.4/s. 
E, paroxysmal spike-wave activity (31s) in a case of petit ma1 epilepsy; K=19, fs=2001s. F, calibration signal (51s); K=19, 
fs=2001s. 
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base maps; the eigenvalues represent the propor- 
tions of contribution of each of these base maps to 
the total variance. If we are interested in the propor- 
tions only, disregarding absolute values, we will 
normalize the eigenvalues to a unit sum 

hi 
hi=-, where T = t r C  

T 

and call the set A = { h' 1, ..., h ' ~  } a A-spectrum of 
the covariance matrix (do not confuse with fre- 
quency spectrum). Figure 2 displays A-spectra 
computed for the EEG data, trajectories of which 
were shown on Fig. 1. This figure makes it clear that 
!2 is a measure of "flatness" of A-spectrum. 

The form of A-spectrum obviously bears an im- 
portant information on the covariance structure of 
the data and, consequently, on the hidden genera- 
ting structures. Let us consider two extreme cases: 

1. A single generator of field described by base 
map bl. Then bl is the eigenvector corresponding to 

the only non-zero eigenvalue hl; all other eigen- 
values are zero. Therefore, the matrix C has a "de- 
generate" A-spectrum (1, 0, ..., 0). (This case is 
easily modelled by feeding all amplifier inputs by 
identical signal, as illustrated by Figs. 1F and 
2F). 

2. K uncorrelated generators with equal power, 
one for each of the K measuring locations. Then C 
will be a diagonal matrix with all eigenvalues Xi=cii 

equal. Consequently, the matrix C has a uniform A- 
spectrum {lIK, ..., lIK}. 

Although these two extreme cases are not physi- 
ologically realistic, they provide anchor points for 
a definition of a measure of complexity. What we 
need is a function of h's defined in such a way that 
its value is 1 for case (I), and K for case (2). 

DEFINITION OF Q 

The reasoning sketched briefly above lead us to 
the following heuristic definition of multichannel 

Fig. 2. A-spectra and corresponding Q values computed for the six trajectories shown in Fig. 1A-F. 
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EEG complexity. Be { ..., h ' ~  ) a A-spectrum 
of the covariance matrix of the data. We then define 

K 

Q = exp { - C log A]} (2) 
i = l  

(If one or more eigenvalues are zero, we for- 
mally set 0 log 0 = 0.) 

PROPERTIES OF Q 

According to the definition given above, 0 has 
the following properties: 

1. R is invariant to data scaling. If the data vec- 
tors are multiplied by a constant c, the eigenvalues 
change by factor c2; this effect will be cancelled by 
normalization of eigenvalues, so that h' do not 
change. 

2. R is invariant to time scaling. It is obvious 
from the bare fact that the time dimension disap- 
pears due to summation over time index n in com- 
putations of covariance matrix C. Therefore, R 
depends only on covariance structure of the data, 
not on absolute frequencies. 

3. R yields values ranging from 1 to K. It can be 
easily shown that the function -Zh'j log h'j reaches 
its maximum, log K, at A={lIK ,..., lIK}. On the 
other side, the function vanishes in the degenerate 
caseA={ 1,O ,..., O}. The exponential function in the 
formula (2) merely maps the interval [0, log K ]  to 
the interval [I ,  K ]  as required. 

4. R yields a lower bound estimate of number of 
generators. If there are R uncorrelated generators 
(R I K), the A-spectrum is 

1 
, which implies Q=R 

GROSS STATES DESCRIPTION 

few hundreds of data samples are required for a re- 
liable estimate of the covariance matrix, R is thus 
no candidate for studies on a time scale of tens or 
hundreds milliseconds, in the range of brain micro- 
states (Lehmann et al. 1987). The proper area for its 
use are studies of brain macrostates, gross states of 
brain functioning, of duration in orders of minutes 
or longer. 

APPLICATION TO SLEEP DATA 

In order to examine the behaviour of the new de- 
scriptor, we opted for human sleep EEG recordings, 
as the sleep stages show obvious differences in spa- 
tial synchronization of the electrical activity. 

A whole-night record of sleep EEG (duration 
7:44 h, sampled at& = 102.41 s, system 10120) was 
analysed by time slices of 2.5 s. To reduce the time 
resolution to that used in sleep scoring routine, me- 
dians of each eight consecutive R values were com- 
puted, so that the time profile was constructed of 20 s 
epochs. 

Independently, sleep stages were scored for each 
of these 20 s epochs according to scoring system by 
Rechtschaffen and Kales (1 968), and artifact counts 
were determined. Only epochs without artifacts 
were taken for the subsequent statistics, although 

Fig. 3. A comparison of R-complexity for distinct sleep stages 
The a descriptor, by its very nature, is a par- (averagekl SD and minimax). ANOVA: F= 146.48, d+5,884, 

ameter of an epoch of certain time extent; at least n=470, P<0.001. 
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this somewhat reduced the number of accepted 
epochs. 

The results of between-stage comparison are 
shown on Fig. 3. An ANOVA test has confirmed 
highly significant differences between sleep stages; 
note the apparent decrease of complexity during 
slow wave sleep. 

This example is taken from a larger study on dif- 
ferences in R-complexity between sleep stages and 
sleep cycles by Szelenberger et al. (1996). 

EXTENDING THE DESCRIPTION 

Although our investigations concern mainly the 
complexity of brain electric activity, we feel that a 

description of brain in terms of complexity only 
would be badly incomplete. What we need is a com- 
plementary description in terms of average voltage 
and dominant frequency, or more exactly, multi- 
dimensional analogs of these traditional measures. 

To this purpose we compute estimates of integral 
squared norms of state vectors and their differences 
in time: 

Fig. 4. A synoptic plot of Z, a, and Q descriptors, computed by 20 secepochs for a whole-night sleep EEG record. Below a 
profile of visually scored sleep stages, in the order MT, W, S1, REM, S2, S3, S4. Time axis labelled by hours. 
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Speaking mapping language, m, is equivalent to 
the integral of squared global field power, while ml 
is the integral of squared (unnormalized) map dis- 
similarity between successive maps. 

Obviously, m, is identical to the total variance T 
in formula (1); thus, the quantity 

brain - had dimension K (number of electrodes) and 
its axes were all labelled in voltage units (pV). The 
gross state space described here is a 3-dimensional 
space of physically heterogeneous dimensions (pV, 
Hz, and dimensionless R); it is something like the 
[ p ,  V, T] space of states of a gas volume in elemen- 
tary physics. 

DISCUSSION 
(where K = number of channels) represents the ef- 
fective voltage per channel. 

Furthermore, the quantity 

(where At=sampling step) has the property of gener- 
alized frequency; this can be easily shown if we im- 
agine a circular trajectory in the state space which 
makes @ windings per second. 

The descriptors C and @ are, in fact, multi- 
dimensional analogs of Hjorth's descriptors, activ- 
ity and mobility, respectively (Hjorth 1973). 

DYNAMICS IN [C, @, a] SPACE 

Using the three descriptors together, we can as- 
sign each analysed epoch of an EEG record three 
coordinates [C, @, R] . Dividing a long-term record 
into epochs of equal length, we obtain time series of 
these descriptors; in this way we can assess the dy- 
namics of gross states of the brain over long time 
periods (Fig. 4); this, of course, at the cost of enor- 
mous data reduction. 

Again, we can represent each epoch as a point in 
a "gross state space" anduse a 3D display tools to 
study the structure of the data cloud. First experien- 
ces with such a representation of sleep EEG records 
in the [C, @, R] space are very encouraging. Mark- 
ing epochs according their respective sleep stages 
reveals differences between states (Fig. 5). 

Since we use the term "state space" in two dif- 
ferent meanings, it is important to avoid confusion 
of the concepts. The state space discussed above - 
that is, the space of momentary electric states of the 

Relationships to other EEG measures 

R is defined in such a way that it is in principle 
independent of the voltage or frequency, as stated 
above. This, however, does not mean that R will not 
correlate with other EEG measures. Inspection of 
the results indicates that, generally, data epochs of 
higher voltage and lower frequencies have lower 
complexity (see Fig. 4). The relationships are ob- 
viously non-linear and rather complex. 

In this context it is necessary to distinguish be- 
tween logical and empirical independence. The for- 
mer is given a priori by a mathematical proof; the 
latter is given by experimental findings. In a sense, 
the logical independence is a prerequisite for 
meaningful investigations of empirical correla- 
tions. 

Relationships to other methods of analysis 

The method of assessment of complexity of 
multichannel EEG recordings presented here is 
much closer to space-oriented methods than to 
classical time-domain techniques, as it works with 
entire data vectors at a time. On the other hand, it 
is definitely beyond scope of the traditional map- 
ping approach. Rather than to reduce a map to some 
"spatial descriptors" in the real 2-dimensional space 
of electrode array, it operates in an abstract K- 
dimensional state space without preliminary data 
reduction. 

As for the SPCA, Skrandies and Lehmann 
(1982) used this technique for statistical processing 
of evoked potential data, with the aim to find prin- 
cipal components of EP distributions at selected 
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latency times. Lehmann (1987, p. 325) also lists 
Spatial PCA in his outline of a system of spatial ana- 
lysis. In both cases SPCA was treated as a back-end 
method, used for final statistical data analysis and 
presentation. In our approach, SPCA serves rather 
as a front-end method, that is, a technique of trans- 
formation of input data. 

Generally speaking, SPCA is a special case of 
projection of observed data into a (sub)space 
spanned on a appropriately selected orthonormal 
base. In case of SPCA, the base vectors are deter- 
mined solely by the data, so this is a truly "data- 
driven" procedure. Alternatively, a predefined set 
of orthogonal vectors or spatial functions could be 

E27SFO - s l e e ~  record 

used to the same purpose; this was the approach 
taken by Fuchs et al. (1987) in their analysis of 
alpha-EEG. 

PaluS (1991) proposed a measure called "linear 
complexity" which was somewhat similar to a; this 
quantity was, however, a function of eigenvalues of 
the correlation matrix (which is different from the 
original covariance matrix) and its construction was 
different. 

Recently, Ziller et al. (1995) have studiedperfor- 
mance of Hjorth's time domain descriptors and 
correlation dimension ( 0 2 )  in classification of sleep 
stages. They found combination of Hjorth's "mo- 
bility" and "complexity" to be superior to classifi- 

Fig. 5. A portrait of a whole-night sleep EEG record (same as in Fig. 4) in the [C, CD, 521 space. Axes: C 0 - 24 pV, CD 0 - 12 Hz, 
52 0 - 6. Sleep stages distinguished by graphic symbols: dots, waking; open circles, stage 1; asterisks, REM; filled circles, stage 
2; diamonds, stages 3 and 4. 
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cation by D2. Their work, although based on one- 
channel record only, goes to some extent in the 
same direction as sleep EEG study presented here. 
However, the final goal is different: Ziller et al. op- 
posed time-domain descriptors in order to find bet- 
ter descriptors, while we take time-domain 
descriptors and complexity measure together to ob- 
tain as complete description as possible. 

As mentioned above, the C and @ descriptors are, 
in fact, generalization of Hjorth's "activity" and 
"mobility" to a multi-dimensional signal. Hjorth's 
"complexity", being a measure of dispersion of the 
frequency spectrum, has nothing to do with R-com- 
plexity or D2-complexity. (The term "complexity" 
is obviously heavily overloaded). 

Methodical and technical considerations 

There are few technical problems which still 
have to be solved. Perhaps the most important 
among them is the length of epoch of analysis. A re- 
liable estimate of the covariance matrix is necessary 
for computation of R. A lower limit for the number 
of data points should be determined; in praxis, we 
decided deliberately that the epoch length should be 
at least 1 s. If we take too short epochs, then the vol- 
ume covered by the trajectory is not filled densely 
enough to allow for valid estimate of the covariance 
matrix; on the other hand, with too long epochs we 
run the risk of mixing activities of different gener- 
ator configurations, hence increasing the resulting 
estimate of complexity. Systematic investigations 
in this area are required.The same applies to the in- 
fluence of other factors, for example, number of rec- 
ording channels (K). 

What concerns the details of implementations, 
~hese do not affect the essential question of viability 
of the method. On the other hand, if systematic 
studies are to be performed, an effective implemen- 
tation is a must. The most time consuming part of 
the algorithm is computation of the eigenvalues of 
the covariance matrix. We currently use the Jacobi 
diagonalization method (Golub and Van Loan 
1983); it is stable and easy to implement, but it is 
known to be not the fastest. A choice of a more 

sophisticated algorithm may appear necessary with 
large volume of data. 

Yet another complexity? 

The issue of complexity of brain electrical activ- 
ity is traditionally associated to the theory of non- 
-linear systems - popularised as "chaos" theory - and 
their mathematical characterization (for reviews, 
see Rapp et al. (1989) and Pritchard and Duke 
(1992). Thus, our proposal for a new descriptor of 
EEG complexity may provoke an uneasy reaction: 
why, yet another complexity? 

It should be stated explicitly that R-complexity 
is not a new breed of "chaos" measures, and was not 
introduced as a replacement or "improvement" of 
them. While the latter were designed to characterize 
systems with strong non-linearities which could not 
be adequately described by standard methods, the 
apparatus of R-complexity relies on well-known li- 
near methodology. Most of complexity studies con: 
cerned one-dimensional time series, using the 
Takens method of "delayed coordinates" to create 
a reconstruction of state space trajectory, R is by 
definition a descriptor of multi-dimensional time 
series. 

Nevertheless, implicit relationships exist be- 
tween R-complexity and some applications of 
"chaos" measures to EEG. Following the conjecture 
made by Eckman and Ruelle (1 985), DvofAk (1 990, 
1991) proposed a generaliaztion of the correlation 
dimension to multi-channel EEG recordings cover- 
ing entire scalp or large portions of the scalp. This 
"global" dimensional complexity turned out to be a 
rather sensitive indicator of changes in brain func- 
tioning induced by a nootropic drug (Wackermann 
et al. 1993). Recently, MatouSek et al. (1995) found 
significant correlation between differences of glo- 
bal dimensional complexity of awakeldrowsy EEG, 
and subjects' age on the other side. 

It is true that the generalized, global dimensional 
complexity and R-complexity provide quantitative 
description of the same object, that is, the EEG tra- 
jectory in the K-dimensional state space. Neverthe- 
less, the two measures differ in their mathematical 
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definition, and in their intent as well. R-complexity 
is really a global quantitative descriptor of EEG tra- 
jectory which has an intuitively clear geometrical 
interpretation. Moreover, R is easy to compute and 
does not involve any technical intricacies similar to- 
those occurring with "chaos" measures. 

CONCLUSIONS 

R complexity proposed in the present paper ap- 
pears to be a promising descriptor of covariance 
structure of a multichannel EEG record, and conse- 
quently a suitable measure of complexity of spatio- 
temporal dynamics of the electric activity of the 
brain. 

Preliminary results obtained in a study on human 
sleep EEG indicate that R may truly reflect physi- 
ological states of the brain, particularly when em- 
bedded in a 3-dimensional [C, @, R]  system of EEG 
descriptors. Further experimental data should clar- 
ify detailed relationships between R and other par- 
ameters, and assess the amount of incremental 
information beared by the new descriptor. 
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